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Abstract. Reduced Order Models (ROM) with up to five modes of vibration (terms) are used to investigate the amplitude-

voltage of parametric resonance of coaxial vibrations of electrostatically actuated double-walled carbon nanotubes 

(DWCNTs). ROM with one term is solved using the Method of Multiple Scales (MMS), and all other ROMs are solved using 

a continuation and bifurcation method AUTO-07P, and also numerical integration. Intertube van der Waals, electrostatic, and 

damping are forces acting on the DWCNT. Soft AC excitation and small viscous damping forces are assumed. Euler-Bernoulli 

beam assumptions are considered for the DWCNT. MMS and AUTO solutions show an excellent agreement in low 

amplitudes. The importance of the results in this paper is the effect of AC frequency on the voltage response of the DWCNT. 
 

Introduction 
 

Sumio Iijima discovered the fullerene-based carbon nanotube (CNT) [1]. DWCNTs are specific type of CNTs 

comprised of two concentric carbon nanotubes with one tube nested within the other. DWCNTs may be used 

in applications like lasers [2], sensors [3], and transistors and switches [4]. The actuating mechanism in the 

application of DWCNTs as resonator sensors for mass sensing is “parallel plate” electrical actuation. Pull-in 

instability is a phenomenon that occurs when investigating nonlinear behavior under electrostatic actuation 

[5]. The 0th order solution for free response of DWCNTs has been previously investigated [6]. 
 

Amplitude-voltage response 
 

The governing equations of motion of the two carbon-nanotubes (CNTs) are given by [6], Fig. 1 (Left): 
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where 
1 2
,y y  are CNTs deflections, 

1 2
,A A  cross-sectional areas, 

1 2
,I I cross-sectional moments of inertia, of 

inner and outer tubes, respectively, x is axial longitudinal coordinate, t time, ρ density, E Young’s modulus, 

and b damping coefficient. Also 𝑓𝑣𝑑𝑊𝑇−𝑇  is the intertube van der Waals force where
1 3,C C  are van der Waals 

interlayer interaction coefficients. The electrostatic force is given by an AC voltage tVV = cos0
. 

0V  and Ω are 

the amplitude and circular frequency of the AC voltage, respectively. Figure 1 (Right) shows the effect of 

frequency on the amplitude-voltage response on DWCNT.  

 

 

 

 

 

 

 

 

 

 
 

Figure 1: (Left) Electrostatically actuated DWCNT cantilever resonator. (Right) Effect of frequency on the amplitude-voltage 

response of parametric resonance of coaxial vibrations of electrostatically actuated DWCNT. 
 

For numerical simulations a typical DWCNT with a length of 200 nm, inner tube radius 0.35 nm, outer tube 

radius 0.7 nm, gap g of 50 nm, has been considered. Dimensionless deflections Umax and Vmax with respect to 

the gap of the tips of the two CNTs are equal since coaxial vibrations are investigated. The amplitude-voltage 

response consists of subcritical and supercritical bifurcations, with bifurcation points of zero amplitude, and a 

bifurcation of non-zero amplitude.  As the detuning frequency  increases the supercritical bifurcation point is 

shifted to lower voltage values and the amplitude of non-zero amplitude bifurcation point reduces significantly, 

while the subcritical bifurcation point is not affected. 
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