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Abstract. This paper introduces a generic structure for nonlinear friction models in the class of Port Hamiltonian
Systems (PHS). This formalism guarantees the passivity of the models which can be transposed to discrete-time for
appropriate numerical schemes to compute stable simulations. The resulting generic friction model encompasses existing
models from the literature and can be easily coupled to any system written in the PHS formalism.

Introduction

Stability of simulations of contact mechanics is difficult to guarantee and can be critical e.g. in the context of
numerical sound synthesis [1]. This work aims to provide a generic structure for elastoplastic friction models
in the core class of PHS that guarantees passivity. Moreover, this property can be transposed to the numerical
domain for appropriate structure-preserving discretization methods [2, 3]. The proposed structure encompasses
several singlestate elastoplastic friction models from the literature ([4, 5]) and allows to build new ones, still
benefiting from the passivity property that stems from the PHS formalism to refine a base model, step by step.
Finally, the modularity of the PHS framework allows to couple this friction model to any resonator (linear or
nonlinear [3]).

Results and discussion

The proposed generic structure for friction is based on the classical decomposition of material velocity into
an elastic component (reversible) with elastic elongation xe =

∫ t
0 vedt and a plastic component (irreversible)

denoted by zp(wrel, wp) so as to describe three phases of interaction: (i) sticking phase with potential (elastic)
energy he(xe) =

ke
2 x

2
e where ke denotes a friction stiffness; (ii) presliding phase (mixing the elastic and plastic

part) based on the dissipation function zi(wi) =
(
zrel(wrel, wp), zp(wrel, wp)

)ᵀ with relative velocity wrel and
plastic force wp = kexe; (iii) slipping phase with purely plastic behaviour (ẋe = 0). The dissipation function is
structured as zi(wi) = Ri(xe,wi)wi with semi positive-definite matrix Ri(xe,wi). This yields the following
structured state-space representation [2] (PHS):
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with external ports (input velocity vin and output force fout) that convey the power PS = vinfout provided
by the system to its environment, and skew-symmetric structure matrix Jᵀ = −J so that system (1) encodes
the power balance Ḣ + PD + PS = ∇H(x)ᵀ ẋ + wᵀ z(w) + vinfout = 0. The passivity analysis of (1) is
straightforward with the dissipated power in the power balance given by PD = wᵀ

i Ri(xe,wi)wi ≥ 0, while
this task may be not obvious with different formulations (see e.g. [1]).

(a) xe = −2xba. (b) xe = 0. (c) xe = +2xba.

Figure 1: Power dissipated in the Dupont model of friction [5] for different values of the elastic state xe.
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